lunes, 16 de agosto de 2010

capasitores

Fuente: Ciencias Místicas www.cienciasmisticas.com.ar/
CAPACITORES
________________________________________
Se llama capacitor a un dispositivo que almacena carga eléctrica. El capacitor está formado por dos conductores próximos uno a otro, separados por un aislante, de tal modo que puedan estar cargados con el mismo valor, pero con signos contrarios.
En su forma más sencilla, un capacitor está formado por dos placas metálicas o armaduras paralelas, de la misma superficie y encaradas, separadas por una lámina no conductora o dieléctrico. Al conectar una de las placas a un generador, ésta se carga e induce una carga de signo opuesto en la otra placa. Por su parte, teniendo una de las placas cargada negativamente (Q-) y la otra positivamente (Q+) sus cargas son iguales y la carga neta del sistema es 0, sin embargo, se dice que el capacitor se encuentra cargado con una carga Q.
Los capacitores pueden conducir corriente continua durante sólo un instante (por lo cual podemos decir que los capacitores, para las señales continuas, es como un cortocircuito), aunque funcionan bien como conductores en circuitos de corriente alterna. Es por esta propiedad lo convierte en dispositivos muy útiles cuando se debe impedir que la corriente continua entre a determinada parte de un circuito eléctrico, pero si queremos que pase la alterna.
Los capacitores se utilizan junto con las bobinas, formando circuitos en resonancia, en las radios y otros equipos electrónicos. Además, en los tendidos eléctricos se utilizan grandes capacitores para producir resonancia eléctrica en el cable y permitir la transmisión de más potencia.
Además son utilizados en: Ventiladores, motores de Aire Acondicionado, en Iluminación, Refrigeración, Compresores, Bombas de Agua y Motores de Corriente Alterna, por la propiedad antes explicada.
Los capacitores se fabrican en gran variedad de formas y se pueden mandar a hacer de acuerdo a las necesidades de cada uno. El aire, la mica, la cerámica, el papel, el aceite y el vacío se usan como dieléctricos, según la utilidad que se pretenda dar al dispositivo. Pueden estar encapsulados en baquelita con válvula de seguridad, sellados, resistentes a la humedad, polvo, aceite; con terminales para conector hembra y/o soldadura. También existen los capacitores de Marcha o Mantenimiento los cuales están encapsulados en metal. Generalmente, todos los Capacitores son secos, esto quiere decir que son fabricados con cintas de plástico metalizado, autoregenerativos, encapsulados en plástico para mejor aislamiento eléctrico, de alta estabilidad térmica y resistentes a la humedad.
El primer capacitor es la botella de Leyden, el cual es un capacitor simple en el que las dos placas conductoras son finos revestimientos metálicos dentro y fuera del cristal de la botella, que a su vez es el dieléctrico. La magnitud que caracteriza a un capacitor es su capacidad, cantidad de carga eléctrica que puede almacenar a una diferencia de potencial determinado.
La botella de Leyden, uno de los capacitores más simples, almacena una carga eléctrica que puede liberarse, o descargarse, juntando sus terminales, mediante una varilla conductora. La primera botella de Leyden se fabricó alrededor de 1745, y todavía se utiliza en experimentos de laboratorio.
Para un capacitor se define su capacidad como la razón de la carga que posee uno de los conductores a la diferencia de potencial entre ambos, es decir, la capacidad es proporcional al la carga e inversamente proporcional a la diferencia de potencial: C = Q / V, medida en Farad (F).
La diferencia de potencial entre estas placas es igual a: V = E * d ya que depende de la intensidad de campo eléctrico y la distancia que separa las placas. También: V =q / e * d, siendo q carga por unidad de superficie y d la diferencia entre ellas. Para un capacitor de placas paralelas de superficie S por placa, el valor de la carga en cada una de ellas es q * S y la capacidad del dispositivo:
C = q * S / (q * d /  ) =  * S / d
Siendo d la separación entre las placas.
La energía acumulada en un capacitor será igual al trabajo realizado para transportar las cargas de una placa a la otra venciendo la diferencia de potencial existente ellas:
 W = V *  q = (q / C) *  q
La energía electrostática almacenada en el capacitor será igual a la suma de todos estos trabajos desde el momento en que la carga es igual a cero hasta llegar a un valor dado de la misma, al que llamaremos Q.
W = V * dq = ( 1 / C) * ( q * dq) = 1 / 2 (Q2 / C)
Si ponemos la carga en función de la tensión y capacidad, la expresión de la energía almacenada en un capacitor será: W = 1/2 * C * V2 medida en unidades de trabajo.
Dependiendo de superficie o área de las placas su fórmula de capacidad es
C =  * A / 4 d, donde  es la constante dieléctrica.


CAPACITORES FIJOS
Estos capacitores tienen una capacidad fija determinada por el fabricante y su valor no se puede modificar. Sus características dependen principalmente del tipo de dieléctrico utilizado, de tal forma que los nombres de los diversos tipos se corresponden con los nombres del dieléctrico usado.
De esta forma podemos distinguir los siguientes tipos:
• Cerámicos.
• Plástico.
• Mica.
• Electrolíticos.
• De doble capa eléctrica.
Capacitores cerámicos
El dieléctrico utilizado por estos capacitores es la cerámica, siendo el material más utilizado el dióxido de titanio. Este material confiere al condensador grandes inestabilidades por lo que en base al material se pueden diferenciar dos grupos:

Grupo I: caracterizados por una alta estabilidad, con un coeficiente de temperatura bien definido y casi constante.

Grupo II: su coeficiente de temperatura no está prácticamente definido y además de presentar características no lineales, su capacidad varía considerablemente con la temperatura, la tensión y el tiempo de funcionamiento. Se caracterizan por su elevada permitividad.

Las altas constantes dieléctricas características de las cerámicas permiten amplias posibilidades de diseño mecánico y eléctrico.
Capacitores de plástico
Estos capacitores se caracterizan por las altas resistencias de aislamiento y elevadas tempeeraturas de funcionamiento.
Según el proceso de fabricación podemos diferenciar entre los de tipo k y tipo MK, que se distinguen por el material de sus armaduras (metal en el primer caso y metal vaporizado en el segundo).
Según el dieléctrico usado se pueden distinguir estos tipos comerciales:
KS: styroflex, constituidos por láminas de metal y poliestireno como dieléctrico.
KP: formados por láminas de metal y dieléctrico de polipropileno.
MKP: dieléctrico de polipropileno y armaduras de metal vaporizado.
MKY: dieléctrco de polipropileno de gran calidad y láminas de metal vaporizado.
MKT: láminas de metal vaporizado y dieléctrico de teraftalato de polietileno (poliéster).
MKC: makrofol, metal vaporizado para las armaduras y policarbonato para el dieléctrico.
A nivel orientativo estas pueden ser las características típicas de los capacitores de plástico:
TIPO CAPACIDAD TOLERANCIA TENSION TEMPERATURA
KS 2pF-330nF +/-0,5% +/-5% 25V-630V -55ºC-70ºC
KP 2pF-100nF +/-1% +/-5% 63V-630V -55ºC-85ºC
MKP 1,5nF-4700nF +/-5% +/-20% 0,25KV-40KV -40ºC-85ºC
MKY 100nF-1000nF +/-1% +/-5% 0,25KV-40KV -55ºC-85ºC
MKT 680pF-0,01mF +/-5% +/-20% 25V-630V -55ºC-100ºC
MKC 1nF-1000nF +/-5% +/-20% 25V-630V -55ºC-100ºC
Capacitores de mica
El dieléctrico utilizado en este tipo de capacitores es la mica o silicato de aluminio y potasio y se caracterizan por bajas pérdidas, ancho rango de frecuencias y alta estabilidad con la temperatura y el tiempo.
Capacitores electrolíticos
En estos capacitores una de las armaduras es de metal mientras que la otra está constituida por un conductor iónico o electrolito. Presentan unos altos valores capacitivos en relación al tamaño y en la mayoría de los casos aparecen polarizados.
Podemos distinguir dos tipos:
• Electrolíticos de aluminio: la armadura metálica es de aluminio y el electrolito de tetraborato armónico.
• Electrolíticos de tántalo: el dieléctrico está constituido por óxido de tántalo y nos encontramos con mayores valores capacitivos que los anteriores para un mismo tamaño. Por otra parte las tensiones nominales que soportan son menores que los de aluminio y su coste es algo más elevado.
Capacitores de doble capa eléctrica
Estos capacitores también se conocen como supercapacitores o CAEV debido a la gran capacidad que tienen por unidad de volumen. Se diferencian de los capacitores convencionales en que no usan dieléctrico por lo que son muy delgados. Las características eléctricas más significativas desde el punto de su aplicación como fuente acumulada de energía son: altos valores capacitivos para reducidos tamaños, corriente de fugas muy baja, alta resistencia serie, y pequeños valores de tensión.

CAPACITORES VARIABLES
Estos capacitores presentan una capacidad que podemos variar entre ciertos límites. Igual que pasa con las resistencias podemos distinguir entre capacitores variables, su aplicación conlleva la variación con cierta frecuencia (por ejemplo sintonizadores); y capacitores ajustables o trimmers, que normalmente son ajustados una sola vez (aplicaciones de reparación y puesta a punto).
La variación de la capacidad se lleva a cabo mediante el desplazamiento mecánico entre las placas enfrentadas. La relación con que varían su capacidad respecto al ángulo de rotación viene determinada por la forma constructiva de las placas enfrentedas, obedeciendo a distintas leyes de variación, entre las que destacan la lineal, logarítmica y cuadrática corregida.


IDENTIFICACIÓN DE CAPACITORES
Vamos a disponer de un código de colores, cuya lectura varía según el tipo de condensador, y un código de marcas, particularizado en los mismos. Primero determinaremos el tipo de condensador (fijo o variable) y el tipo concreto dentro de estos.
Las principales características que nos vamos a encontrar en los capacitores van a ser la capacidad nominal, tolerancia, tensión y coeficiente de temperatura, aunque dependiendo de cada tipo traerán unas características u otras.
En cuanto a las letras para la tolerancia y la correspondencia número-color del código de colores, son lo mismo que para resistencias. Debemos destacar que la fuente más fiable a la hora de la identificación son las características que nos proporciona el fabricante.

Capacitores cerámicos tipo placa, grupo 1 y 2.


Capacitores cerámicos tipo disco, grupo 1.


Capacitores cerámicos tipo disco, grupo 2.



.
CÓDIGO DE COLORES

CÓDIGO DE MARCAS


Capacitores de plástico.
CÓDIGO DE COLORES

CÓDIGO DE MARCAS




Capasitores electroliticos
Estos capacitores siempre indican la capacidad en microfaradios y la máxima tensión de trabajo en voltios. Dependiendo del fabricante también pueden venir indicados otros parámetros como la temperatura y la máxima frecuencia a la que pueden trabajar.
Tenemos que poner especial atención en la identificación de la polaridad. Las formas más usuales de indicación por parte de los fabricantes son las siguientes:


Capacitores de tantalio
Actualmente estos capacitores no usan el código de colores (los más antiguos, si). Con el código de marcas la capacidad se indica en microfaradios y la máxima tensión de trabajp en voltios. El terminal positivo se indica con el signo +:

________________________________________

abad rojas ulises ivan

2 comentarios:

  1. estubo muy completa y me parecio muy interesante la informacion se noto que le pusiste esmero pablo juarez mendez

    ResponderEliminar
  2. A pues a mi la neta no me gusto, te pudiste esforzar mas, parece un trabajo de niño de primaria.

    ResponderEliminar